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Key Points: 24 

• In the US Southwest, megadroughts are not conditionally linked to low-frequency 25 

variability in the tropical Pacific.  26 

• A hybrid modeling approach confirms the statistically significant occurrence of 27 

megadrought in the SWUS similar to paleoclimate records. 28 

• A statistically plausible series of la Niña events may be sufficient to generate 29 

megadrought. 30 
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Abstract 31 

Megadroughts are multidecadal periods of aridity more persistent than most droughts during the 32 

instrumental period. Paleoclimate evidence suggests that megadroughts occur in many parts of 33 

the world, including North America, Central America, western Europe, eastern Asia, and 34 

northern Africa. It remains unclear to what extent such megadrought require external forcing or 35 

whether they can arise from internal climate variability alone. A novel statistical-dynamical 36 

approach is used to evaluate the possibility that such events arise solely as a function of 37 

interannual tropical sea surface temperature (SST) variations. A statistical emulator of tropical 38 

SST variations is constructed by using an empirical moving-blocks bootstrap approach that 39 

randomly samples multi-year sequences of the observational SST record. This approach 40 

preserves the power spectrum, seasonal cycle, and spatial pattern of El Niño-Southern 41 

Oscillation (ENSO) but removes longer timescale fluctuations embedded in the observational 42 

record. These resampled SST anomalies are then used to force an atmospheric model (the 43 

Community Atmosphere Model Version 5). As megadroughts emerge in this run, they should, 44 

therefore, be solely a consequence of La Niña sequences combined with internal atmospheric 45 

variability and persistence driven by soil moisture storage and other land surface processes. We 46 

indeed find that megadroughts in this simulation have an amplitude-duration rate that is 47 

generally indistinguishable from the rate documented in paleoclimate records of the western 48 

United States. Our findings support the idea that megadroughts may occur randomly when the 49 

unforced climate system evolves freely over a sufficiently long period of time, implying that an 50 

unforced unusual but statistically plausible series of la Niña events may be sufficient to generate 51 

megadrought.  52 

 53 

1. Introduction 54 

Megadroughts are multidecadal periods of aridity as severe as the 1930s “Dust Bowl”, but much 55 

longer lasting (Woodhouse and Overpeck, 1998; Ault et al., 2014; Cook et al., 2016; Ault and 56 

George, 2018). During the past millennium, paleoclimate records indicate that megadroughts 57 

occurred throughout the western US, northern Mexico, and many other parts of the world (Cook 58 

et al., 2016). Their long duration may have imposed unprecedented water stresses on several pre-59 

industrial civilizations, contributing to their collapse (e.g., Benson et al., 2007; Cook et al., 60 
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2016). Furthermore, the odds that they will occur during this millennium are increasing due to 61 

rising regional temperatures and global circulation patterns (Ault et al., 2014; Cook et al., 2015; 62 

Ault et al., 2016). Despite the importance of characterizing the hazards imposed on water 63 

resources by megadroughts, it remains unclear whether such prolonged climate events in the past 64 

emerge in response to exogenous radiative forcing (e.g., solar irradiance, volcanic eruptions, or 65 

orbital trends), as a consequence of internal climate variability on multidecadal to centennial 66 

timescales (e.g., Coats et al., 2013; Stevenson et al., 2015; Ault et al., 2018), or as a function of 67 

unusual, but unforced, drought episodes on interannual timescales that collectively produce a 68 

megadrought (Coats et al., 2015; Ault et al., 2018). Here we explore this possibility by asking if 69 

an unusual, but inherently random series of La Niña events would be able to produce 70 

megadroughts.  71 

 72 

Because megadroughts are infrequent events that have only occurred once or twice per 73 

millennium, two basic approaches have been employed to understand their nature using both 74 

dynamical or statistical models (e.g., Coats et al., 2015; Stevenson et al., 2006; Cook et al., 2016; 75 

Ault et al., 2018; Steiger et al., 2019). The first approach uses general circulation models 76 

(GCMs) of varying degrees of complexity to simulate fluctuations in the ocean and atmosphere 77 

that may lead to megadrought in millennial-scale simulations (e.g., Hunt, 2006; Coats et al., 78 

2015; Stevenson et al., 2015; Stevenson et al., 2018). The advantage of this approach is that it 79 

links prolonged droughts to their physical and dynamical causes in the climate system. However, 80 

there are a few critical drawbacks for evaluating the possibility that an unusual sequence of La 81 

Niña events could cause megadroughts. First, GCMs do not always reproduce observed 82 

teleconnections between the tropical Pacific and the western US (Coats et al.,2013a), nor do their 83 

teleconnection strengths remain stable on multi-century timescales (Coats et al.,2013b). Second, 84 

GCMs often simulate ENSO variations that are too frequent and too energetic on interannual 85 

timescales (e.g., Guilyardi et al., 2009; Ault et al., 2013a); this exceptionally energetic ENSO 86 

variability, in turn, makes it extremely unlikely that any given simulation will see an “unusual” 87 

sequence of La Niña events because the tropical Pacific frequently switches states between La 88 

Niña and El Niño conditions. Finally, the simulations to-date using GCMs to characterize 89 

megadroughts either use a fully-couple global ocean, which makes it impossible to isolate the 90 

effects of the tropical Pacific on megadrought statistics, or an atmosphere-only model with 91 
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climatological SSTs (e.g., Stevenson et al., 2015), which does not include El Niño and La Niña 92 

variations. 93 

 94 

As an alternative to the GCM-based approach to characterizing megadrought, several studies 95 

have developed statistical models of drought using sea surface temperature (SST) anomalies 96 

based on empirical relationships (e.g., Coats et al., 2013; 2015; Ault et al., 2018).  For example, 97 

using a linear inverse model (LIM) of internal climate variability, Ault et al. (2018) found that 98 

the frequency, magnitude, and spatial scale of megadroughts during the last millennium are 99 

consistent with the statistics of an unforced climate system. While Ault et al. (2018) established a 100 

“robust” null hypothesis for the occurrence of megadrought in the western US, the study was not 101 

designed to simulate the dynamic circulation patterns in the atmosphere. Moreover, the authors 102 

employed a LIM with nearly global sea surface temperature (SST) anomalies, meaning that the 103 

statistical relationships responsible for pushing the western US into megadrought could originate 104 

from high-latitude sources of low frequency variability (e.g., the Atlantic Multi-decadal 105 

Oscillation or the Pacific Decadal Oscillation).  106 

 107 

From the noted four characteristics—frequency, magnitude, spatial scale, and mean-shift—that 108 

could define megadroughts (Ault et al., 2018), the mean-shift of the climate during the Medieval 109 

Climate Anomaly (MCA) era is a key component for the predominant clustering of megadrought 110 

(Coats et al., 2016), where intensification of droughts is not possible if the shifting is artificially 111 

removed. Attempts to identify the source of this clustering remain inconclusive (Coats et al., 112 

2016; Ault et al., 2018). Thus, the MCA climate shift is critical because the clustering of the 113 

megadrought events. This finding opens the question whether its source is due to low-frequency 114 

variability in the Pacific or Atlantic. Although results on this matter are still inconclusive, new 115 

global climate reconstructions (e.g., the Paleo Hydrodynamics Data Assimilation, PHYDA, 116 

Steiger et al., 2019; 2021) or synthetic climate simulation, as we propose here, can give clues for 117 

further exploration of the low-frequency climate variability role in the MCA climate shift.  118 

 119 

Here we test whether or not the tropical Pacific alone could generate megadroughts by using a 120 

bootstrap methodology to construct a synthetic SST forcing field with realistic sequences of El 121 

Niño and La Niña events. Therefore, we evaluate how well the method satisfies a series of 122 
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criteria that warrant a realistic pattern of SST, in which ENSO evolution and its randomness play 123 

an important role. Such a methodology would therefore allow us to ask whether an inherently 124 

random series of interannual variations, along with internal atmospheric variability, could 125 

produce megadroughts in the SWUS.  126 

 127 

 128 

2. Methods and datasets 129 

2.1. Experimental design 130 

a. Constructed synthetic sea surface temperature 131 

The key component of our experimental design is the construction of the SST. Here we 132 

constructed a 1000-year long synthetic SST datasets. Our synthetic SST should preserve four 133 

characteristics of the historical record: (1) the ENSO signature in the power spectrum at the 134 

interannual scale; (2) the spatial patterns of SST anomalies to ensure that the forcing driving of 135 

the atmospheric component in the model is realistic; (3) the seasonal cycle of SST anomalies, so 136 

ENSO peaks in boreal winter; and (4) the evolution of the ENSO cycle with transitions from El 137 

Niño to La Niña embedded in the SST forcing fields. Therefore, the millennial synthetic SST 138 

field should isolate interannual variability in a long simulation to answer whether megadroughts 139 

can be generated as part of the natural variability without requiring an external forcing such as 140 

solar irradiance, volcanic eruptions, orbital trends, or high latitude SST variability. This allows 141 

us to answer whether the bootstrap method produces realistic teleconnections between the 142 

tropical Pacific and terrestrial hydroclimate when coupled to a GCM. 143 

b. Moving-blocks bootstrap approach for constructing SST 144 

The approach for generating the synthetic SST uses a moving-blocks (mv-Ba) bootstrap 145 

approach (Wilks 1997). In general, a bootstrap data generation emulates the statistics of a system 146 

by resampling a collection of a short original dataset (Wilks, 2011).  In the moving-blocks 147 

bootstrap approach, randomization is done in blocks to preserve the seasonal evolution of ENSO 148 

but destroys any autocorrelation on low-frequency time scales. The resampling is done over a 149 

variable length segment of the original data that is defined by the duration of El Niño Southern 150 

Oscillation (ENSO) (Fig. 1), with the specific goal of retaining ENSO-like variability. Two 151 

constraints were used to guarantee conservation of seasonality and smooth continuity within the 152 
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final time series. First, the default length of the mv-Ba bootstrap is 12 months for neutral years 153 

and variable for ENSO years (random between 2-7). Second, whenever the selected year is in El 154 

Niño or La Niña phase, we extend its original length with random values, so it always starts in 155 

January and ends in December. The bootstrap sampling process is done with the Niño 3.4 index 156 

(Trenberth, 1997) as reference, so we have the original sequence of El Niño and La Niña events 157 

with the block construction over the total SST field. To generate the synthetic SST, monthly 158 

observational data from the period 1960-2007 is used as a sampling pool, and it is resampled 159 

with reordering. As a result, we get a different sequence of El Niño and La Niña events that is 160 

completely analogous to what occurred in the historical period.  Historical SST data for this 161 

resampling originates from the NOAA extended reconstructed SST (ERSST; Smith et al, 2008).   162 

c. The linear inverse model of SST   163 

As in Ault et al. (2018), we used a LIM approach as a benchmark to compare against the result 164 

with mv-Ba, but the alternative millennial SST from LIM is not part of the CAM5 experiment 165 

(see next). The LIM generates “multivariate red noise”, which is analogous to a first order 166 

autoregressive (AR(1)) process; commonly used to test the null hypothesis for a unidimensional 167 

time series such as  !"
!#
= 𝐿𝑋 + 𝜁. In LIM, autocorrelation coefficients are constructed with a 168 

linear deterministic feedback metric (𝐿), and we use a multidimensional field (𝑋) instead of a 169 

unidimensional time series. In this framework, we define 𝑋 with three fields: sea surface 170 

temperature, sea surface height, and Palmer drought severity index (PDSI; Palmer 1965). 𝜁 is the 171 

stochastic white noise forcing, which generates the variance that perturbs the linear system. For 172 

further details see Ault et al. (2018).  173 

 174 

2.2. The Community Atmosphere Model  175 

The SST generated with the mv-Ba procedure is used to force the Community Atmospheric 176 

Model version 5 (CAM5). To the extent possible, our simulations follow a similar experimental 177 

design to the control runs in the Last Millennium Ensemble (LME; Otto-Bliesner et al., 2016). 178 

Our simulations use CAM5 with prescribed SST in the tropics between 20°S and 20°N as in the 179 

Tropical Ocean - Global Atmosphere (TOGA) coupled ocean atmosphere experiments (Webster 180 

and Lukas, 1992; Gates, 1992; Phillips, 1996; Hurrell et al., 2008; Deser et al., 2017). We also 181 

use fixed ice configuration (Rayner et al., 2006), with 1980-2007 climatological ice 182 
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concentration. Both SST and ice are interpolated in time to center the data at the middle of each 183 

month (Taylor et al., 2000). Total solar irradiance (TSI) and orbital parameters are fixed to the 184 

year 850 AD for the entire run. CAM5 is used under the modeling framework of the Community 185 

Earth System Model (CESM; Hurell et al., 2013) version 1.2.2 with 30 vertical levels in the 186 

atmosphere (from the surface to 2 mb) and 15 soil levels (from the surface to 35 meters ground). 187 

The horizontal resolution for this experiment is 1.9 x 2.5 degrees with finite volume (Lin and 188 

Rood, 1997).  189 

 190 

2.3. Additional restrictions on SST 191 

a. The tropical-extratropical transition zones 192 

The synthetic SSTs are defined only in the tropical domain for both the mv-Ba SST and LIM 193 

SST between 20°S to 20°N (Fig. S1). Next, the tropical SST is merged with a climatological 194 

SST (annual cycle) from +/- 35° to the poles using the same data originally used to obtain the 195 

SST. Finally, the regions between 20°N-35°N and 20°S-35°S are linearly interpolated to reduce 196 

abrupt transitions from the tropics to the extratropics. This restriction is important because 197 

internal variability might play an important role in megadrought development during decadal and 198 

centennial scales (Coats et al., 2015). 199 

b. Low-frequency signal in the SST 200 

As in Ault et al. (2018), we removed the observed linear trend in SST over the length of the 201 

observations. Although the trend is small in the tropics, the mv-Ba model exhibited low-202 

frequency SST variability due to the long sampling of the observed historical trend in sea surface 203 

temperature after 1960 (Mann et al., 2009). Using a linear regression method that does not 204 

change the statistics of the SST with the mv-Ba approach, the problem has been solved by 205 

removing the observational SST trend prior the calculation of the synthetic SST. Thus, the 206 

approach removes the global net radiative force-like term (Mann et al., 2009) obtained from a 207 

global average surface temperature (HadCRUT4, Osborn and Jones, 2014). We then use linear 208 

regression of this global surface temperature to fit SST data at each grid point. To avoid 209 

removing SST variability in the interannual time scale, the global surface temperature was 210 

smoothed using a 10-year running mean filter before the linear regression. Thus, the generated 211 

historical trend contain the observed global warming trend.  212 

 213 
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2.4. Statistical characteristics of megadrought  214 

While the mv-Ba statistical model can be run hundreds of times for thousands of years, CAM5 215 

cannot (at least, not with existing technology and a standard University Small Allocation on the 216 

Cheyenne supercomputer). We therefore run large numbers of realizations of the mv-Ba model, 217 

then examine the distributions of key statistics that describe the power spectrum, seasonality, and 218 

spatial patterns of tropical Pacific SST variability in these oceans. To identify megadroughts in 219 

our mv-Ba realizations, we use the same metrics as Ault et al., 2018, to characterize 220 

megadroughts by their duration, magnitude, and spatial scale. Specifically, we compute the 35-221 

year running mean of PDSI (PDSI35) from both reconstructions and model data, then use its 222 

minimum values over a 1000-year period to identify the “worst” prolonged event. To 223 

characterize the spatial scale of megadroughts in the western US, we calculate the fraction of the 224 

domain with PDSI35 values below -1 standard deviation. This fraction is then used as a drought 225 

area index (DAI). Probability density functions (PDFs) are computed using each of these test 226 

statistics from the mv-Ba statistical model and compared against observations and new 227 

simulations. 228 

 229 

2.5. The Last Millennium Ensemble experiment 230 

We use the rich archive of model outputs from the Last Millennium Ensemble experiment (Otto-231 

Bliesner et al., 2016), which are a set of simulations all based on the CESM with CAM5 as an 232 

atmospheric model. The LME experiment has the primary goal of exploring sources of 233 

uncertainty in the reconstruction of the external forcing that drives the climate of the past 234 

millennium. Here, the purpose is to check the skill of CAM5 (with LME and the in-house 235 

millennial simulation) to capture drought variability in the SWUS. We investigate whether the 236 

pattern in CAM5 simulation with mv-Ba is comparable with LME. We used the multiple 237 

simulations, a total of 35 for this study, to generate an approximation of the most probable 238 

scenario with several forcing simulations: volcanic eruption, changes solar irradiance, orbital, 239 

greenhouse gas level, land use-land cover, and the full forcing. That includes ensemble members 240 

with random perturbations of the order of 10-14°C in the air temperature field at the initialization 241 

of the simulation.  However, we do not make a distinction among the external forcings in the 242 

analysis at this point.  We employed the first 1000 years from each simulation (850-1849) to 243 

avoid the post-industrial global warming era. 244 
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 245 

3. Results 246 

3.1. Statistical characteristics of mv-Ba tropical SSTs  247 

Do the mv-Ba statistical SST emulators preserve the power spectrum of ENSO on interannual 248 

timescales? The distribution of NINO3.4 power spectra generated by the mv-Ba statistical model 249 

is consistent with the characteristics of interannual variability in the tropics (Fig. 2) and similar 250 

to the LIM. Using 100 realizations (a total of 100,000 years) from both methods, both 251 

approaches can reproduce the observed spectral peaks at the interannual range (x-axis < 10 252 

years) at the 95% confidence level. Specifically, the spectral density of the mv-Ba approach fully 253 

encompasses the range of spectral densities recorded in observational datasets across two-year to 254 

seven-year frequencies (gray shading, Fig. 2). On interdecadal timescale (x-axis > 10 years), 255 

spectral amplitude of both distributions decreases. Consequently, these attributes of the mv-Ba 256 

ensure that high amplitude, low-frequency (decadal- to century-scale) variability is not present in 257 

the SST forcing fields we later couple to CAM5. 258 

 259 

Do our statistical SST fields exhibit realistic spatial patterns of tropical Pacific anomalies? 260 

The annual spatial pattern of variance in SST generated by mv-Ba is close to the one seen in 261 

observations (Fig. S2). The major variability occurs in the eastern Pacific Ocean. With this 262 

result, we can claim that at the annual scale the approach is indistinguishable from observations, 263 

which will explain later the convergence of the drought results at the long-term run in the CAM5 264 

simulation. However, analyzing the variance at monthly scale, greater similarity exists within the 265 

mv-Ba results. The seasonal amplitude of variance in the NINO3.4 region in the mv-Ba 266 

distribution matches observations nearly identically (Fig. 3).  267 

 268 

Do our statistical methods reproduce the seasonal cycle of SST variance and ENSO 269 

evolution? The mv-Ba approach resolves seasonality well, which does not require El Niño (and 270 

La Niña) events to be phase-locked to the annual cycle. As a result, applying mv-Ba to SST 271 

allows a realistic seasonal evolution of ENSO in the tropics (Fig. 4). Using moving blocks, we 272 

see transitions from El Niño to La Niña phase that peak in January of the El Niño year that are 273 

very similar to transitions seen in observed ENSO years.  As in the observations (and in the mv-274 

Ba approach), La Niña events tend to follow El Niño events.  Nevertheless, the mv-Ba (by 275 
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construction) does overall well at reproducing the observed seasonality of SSTs in the tropical 276 

Pacific, the phase locking of El Niño and La Niña events with the annual cycle, and the seasonal 277 

evolution of individual events. 278 

 279 

Does the mv-Ba method reproduce realistic statistics of teleconnections between the tropical 280 

Pacific and terrestrial hydroclimate when coupled to CAM5? A correlation analysis between 281 

mv-Ba tropical SST (for El Niño 3.4 region) and statistically generated PDSI shows the typical 282 

out-of-phase PDSI pattern between the SWUS hydroclimate and the Pacific Northwest 283 

variability (Fig. S3). A positive relationship between PDSI, within the SWUS, and El Niño 3.4 284 

index is evident in different realizations of the statistical climate. Several CESM simulations 285 

have shown a significant correlation between SST and PDSI. These findings are consistent with 286 

SST and PDSI from instrumental records (Fig. 5). Surprisingly, the variability of PDSI from 287 

CAM5-mv-Ba is consistent with observation, and it exhibits a more coherent pattern than the 288 

fully-coupled LME simulations. We suggest these matching patterns as evidence that key 289 

hydroclimate variability in SWUS is sourced from the tropical climate variability (Coats et at., 290 

2013a). Since the LME is a fully coupled simulation, this difference to observations and the 291 

CESM-vs-Ba simulations might be due to the fixed SST forcing.    292 

 293 

3.2. Megadroughts in a hybrid simulation  294 

Equipped with a better understanding of the statistical behavior of the mv-Ba statistical SST 295 

generator, we now turn to our experiment where we couple one realization from the model to 296 

CAM5. In just one CAM5 run of 1000-year pre-sampled observations, there is an event as severe 297 

as the most severe event of the last millennial in the reconstructed Palmer Drought Severity 298 

Index for the SWUS (Figs. 6 and 7).  Spatial patterns of drought metrics produced by CAM5-299 

mv-Ba look as realistic as those in the observed paleoclimate records (Fig. 5). Both PDSI and 300 

Drought Area Index (DAI) identify megadrought in the simulated 1000-year record (Fig. 6). 301 

Composite analysis of these drought metrics for two different datasets, the mv-Ba SST and 302 

CAM5-mv-Ba SST, support our working hypothesis that megadroughts occur in both the 303 

stochastic (Fig. S4) and the dynamically-generated climate states (Fig. 7). This analysis suggests 304 

that tropical SST variability can drive megadrought based on random processes via the correct 305 

large-scale teleconnection. A composite analysis of SST35 (a 35-year running mean filter of SST) 306 
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during megadroughts in SWUS shows a predominant La Niña-like pattern (Figs. 7 and S3; 307 

bottom), as La Niña has been linked to dry conditions in the SWUS (Seager et al., 2005; 308 

Herweijer et al., 2007), which is also observed in the LME experiment but with a minor impact 309 

over land (Fig. 8) and a weak ocean teleconnection (Fig. 9). Results from our previous work 310 

using LIM (i.e., Ault et al., 2018) are also consistent with this analysis, and they suggest a 311 

similar mechanism.  312 

 313 

3.3. Megadrought statistics 314 

The hybrid modeling approach (CAM5-mv-Ba) confirms the statistically significant occurrence 315 

of megadrought in the SWUS similar to paleoclimate records and LIM (Fig. 10). Results from 316 

CAM5-mv-Ba are compared with the probability density function of several LIM runs used as 317 

benchmark (cyan histogram in Fig. 10). As in Ault et al. (2018), we computed megadrought 318 

characteristics for the SWUS: (1) magnitude and (2) spatial scale. The null hypotheses for (1) 319 

and (2) were rejected at the 95% confidence level (Fig. 10), meaning that both the magnitude and 320 

spatial scale of megadroughts are also statistically significant in this experiment. Therefore, 321 

megadroughts as defined by their magnitude and spatial scale may occur as a result of internal 322 

climate variability and random La Niña-like SST pattern.  323 

a. The magnitude of megadrought: PDSI35 324 

The drought magnitude statistic is defined by the probability density function in the cyan 325 

histogram (Fig. 10a) with mean PDSI35=-0.6.  This cyan histogram represents the minimum 326 

PDSI35 value over a 1000-year time series with a total pool of 1000 samples.  The primary 327 

sample pool was obtained from the 1000-year CAM5-mv-Ba control run. The secondary sample 328 

pool was generated by resampling a 100-year time series of both the PDSI and SST from this 329 

CAM5-mv-Ba run, then using a LIM to stochastically generate a new 1000-year stochastic 330 

PDSI35 (Ault et al., 2018). The marks (*, x, and + in Fig. 10a) are computed in the same way but 331 

using PDSI from the North American Drought Atlas (NADA; Cook et al., 2010) and PDSI from 332 

the CAM5-mv-Ba bootstrap. The NADA is the driest event. PDSI was computed from CAM5-333 

mv-Ba after the atmospheric model runs forced by the SST were allowed to generate the 334 

moisture anomalies in the SWUS. This analysis shows that megadrought magnitude observed in 335 

tree-ring chronology is part of the LIM-PDSI distribution based on CAM5-mv-Ba at the 95% 336 

confidence level (indicated by the light gray region). In addition, Fig. 6 shows that it is 337 
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statistically significant. The parameter distribution shows that the NADA megadrought intensity 338 

during the MCA is not an extreme case, but one that is in 90% (probability of PDSI35 be more 339 

intense than the case measured in NADA, 𝑃𝑟	{𝑋 ≤ 𝑥(𝑁𝐴𝐷𝐴)} 	= 0.9 from Fig. 10a) of the 340 

“classical” megadrought. Therefore, megadrought of higher intensity than the one found in the 341 

paleoclimate tree-ring record are possible and thus can be expected in the future.  342 

b. The spatial scale of megadrought: DAI35 343 

The spatial scale of megadrought in the SWUS also shows statistically significant results (Fig. 344 

10b). For this we use a slightly different approach from Ault et al. (2018), but with similar 345 

conclusions. Here we introduce the scaled drought area index, scaled-DAI35 = PDSI35 × DAI35, 346 

because it is conservative for different PDSI thresholds. As DAI35 and PDSI35 for the SWUS 347 

have an inverse linear relationship for extreme values (Fig. S5), analyzing DAI35 using different 348 

area thresholds makes analysis not generalized. However, scaling DAI (by multiplying it by its 349 

PDSI value) eliminates values that are not relevant for megadrought statistics, for example, 350 

values close to zero for both PDSI and DAI. Therefore, the scaled-DAI35 provides a generalized 351 

parameter that is conservative along different PDSI thresholds that are used to compute DAI. As 352 

noted in the supplementary material, the peak of the scaled-DAI35 distribution is near the same 353 

value (e.g., -15 scaled-DAI35 units) for different PDSI thresholds (Fig. S6). Therefore, scaled-354 

DAI35 is conservative against changes of PDSI. Using this new scaled-DAI35 distribution (Fig. 355 

12b), we show that megadrought spatial scale as computed with tree-ring chronologies (NADA), 356 

mv-Ba, and CAM5-mv-Ba are part of the same statistically-dynamically generated pool of 357 

megadrought distribution (cyan histogram).    358 

   359 

4. Conclusions 360 

Our experiments show that SWUS megadroughts are not conditionally linked to low-frequency 361 

variability in the tropical Pacific. A synthetic tropical SST is constructed to test the significance 362 

of megadrought occurrence driven by a series of La Niña events. This synthetic SST is 363 

stochastically sampled from the current climate (1960-present) but detrended to reduce observed 364 

warming trend signals.  We sampled observations focusing on interannual rather than decadal or 365 

centennial SST variability. Still, our approach preserves the power spectrum, seasonal cycle, 366 

spatial pattern, and ENSO evolution. The so constructed synthetic climate reproduces 367 

megadrought statistics similar to those achieved in the stochastic linear inverse model of Ault et 368 
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al. (2018). With respect to a robust null hypothesis test, this study claims that the spatial scale 369 

and magnitude of megadrought in the SWUS are generated from natural variability of the 370 

interannual climate regime. This provides additional evidence that decadal variability could arise 371 

from internal variability at the interannual scale (Newman et al., 2016). In addition, our 372 

experiment isolated any potential low-frequency variability memory of the Atlantic Ocean, 373 

which raises questions about previous findings that relate Atlantic Ocean variability to SWUS 374 

megadrought (Seager et al., 2008). For paleoclimate research, our approach can help to test the 375 

significance of the low-frequency signal in the tree-ring chronologies, as this approach merges 376 

current statistical knowledge of the climate with an extension of potential synthetic climate 377 

scenarios.   378 

 379 

The CAM5 hybrid setting seems to properly simulate a megadrought type of climate in the 380 

SWUS, even at a relatively coarse spatial resolution. Certainly, this simulation is possible with 381 

the idealized ocean that is statistically indistinct from observations. As speculated in Coats et al. 382 

(2013), both stochastic atmospheric variability and ENSO are capable of producing megadrought 383 

in the SWUS. However, further investigation is required to determine whether internal 384 

atmospheric variability alone can generate 35-year droughts, and not just shorter 15-year 385 

megadrought (Stevenson et al., 2015). For climate change projections, the presented results 386 

motivate further exploration of this hybrid modeling framework to evaluate the impact of 387 

external forcing: solar irradiance, volcanic eruptions, and orbital trends. The CAM5-PDSI 388 

analysis validates the previous finding of megadrought characteristics using the stochastic LIM 389 

approach (Ault et al., 2018). Composite and spectral analyses of SST and PDSI shows strong 390 

teleconnection patterns among observation and CAM5-mv-Ba, something not seen in a fully-391 

coupled LM simulation (Mann et al., 2009; Landrum et al., 2013), which supports the legitimacy 392 

of this experiment.  Our previous work (Ault et al., 2018) shows that the worst event described in 393 

the NADA is not significantly different from the LIM-based null hypothesis. The worst event in 394 

the mv-Ba bootstrap experiment is also consistent with the null hypothesis. The mv-Ba SST 395 

designed here reproduces megadrought, as noted by its spectral-temporal and spatial patterns, 396 

and therefore it makes this approach a reasonable candidate for building other statistics to test in 397 

the SWUS megadrought. 398 

 399 
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Nevertheless, the tests over two of the megadrought statistics (clustering and shift of mean) were 400 

not rejected. This expected result motivates the implementation of additional experiments. We 401 

will use the CAM5 to conduct new experiments to characterize the role of dust, ocean surface 402 

temperatures, solar forcing, and land-surface feedbacks in making megadroughts more clustered. 403 

We are planning these simulations with these LIM and mv-Ba bootstrap approaches that use an 404 

idealized forcing to test whether or not we get a drier mean climate. Such simulations will 405 

include solar, dust variability, and prognostic vegetation, which may potentially be relevant for 406 

driving a mean climate shift during the medieval climate anomaly (MCA). In particular, 407 

megadroughts in the southwest appear to have “clustered” around the MCA. State-of-the art 408 

model simulations do not reproduce that clustering, nor do they simulate the MCA as being drier 409 

on average than more recent centuries (e.g., Coats et al., 2016). Our results here provide new 410 

insights into the possibility that megadrought conditions will be seen this century, and they will 411 

ultimately help scientists and stakeholders alike to prepare for such events if they do unfold in 412 

the western United States. 413 

 414 
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 599 
Figure 1: El Niño 3.4 region (NINO3.4) time series to illustrate the moving-blocks bootstrap 600 

(mv-Ba) methodology. The upper plot is the observational (OBS), original NINO3.4 sea surface 601 

temperature (SST) used as the database for constructing the synthetic moving-blocks bootstrap 602 

SST. An example one realization moving-blocks bootstrap approach is shown in the lower plot 603 

for 57 years and the x-axis labeled in blocks of 10 years (YR). The green boxes show the 604 

construction for two moving-blocks bootstrap of different lengths that are highlighted as an 605 

example and labeled as Lj and Lj+n. 606 

 607 
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 610 

 611 
 612 

Figure 2:  Top: Upper and low 95% confidence limits of NINO3.4 power spectra computed from 613 

100 stochastically generated moving-blocks bootstrap realizations (confidence limits shown in 614 

gray shading), and three different observational SST data products: Kaplan, HadISST, and 615 

ERSSTv3b. Bottom: same analysis as top panel but for SST constructed with the Linear Inverse 616 

model (LIM).  617 
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 638 

 639 

 640 

Figure 3: Monthly standard deviation for NINO3.4 region from observation (a) from the 641 

extended reconstructed sea surface temperature (ERSST) and (b) the moving-blocks bootstrap 642 

(mv-Ba) statistical approach employed here.  643 
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 664 

 665 

Figure 4: Hovmoller diagrams of seasonal evolution of tropical [5°S-5°N] sea surface 666 

temperature (SST) anomaly for two datasets: (a) the extended reconstructed SST (ERSST) and 667 

(b) the moving-blocks bootstrap (mv-Ba) SST.  The diagrams are composite for El Niño events 668 

identified in these databases for its entire life cycle starting in January of the onset year, Jan(0), 669 

and ending two years after, Jan(2).  670 
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 698 

 699 

Figure 5: Correlation winter patterns (December-January-February, DJF) between El Niño 3.4 700 

sea surface temperature (SST) index and Palmer Drought Severity Index (PDSI) for four 701 

databases: (a) observational data from the extended reconstructed SST and PDSI from Sheffield 702 

et al., 201X; (b) SST and PDSI obtained from a CAM simulation driven with SST randomly 703 

obtained from the moving-blocks bootstrap approach, CAM(mv-Ba); and (c) SST and PDSI 704 

obtained from a simulation from the Last Millennium Ensemble (LME).  705 
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 708 
 709 

 710 

Figure 6: Palmer Drought Severity Index (PSDI) and Drought area index (DAI) time series 711 

defined over the SWUS region (124°-105°W and 32°-41°N) from the CAM5-mv-Ba simulation 712 

with sea surface temperature (SST) generated by the moving-block (mv-Ba) bootstrap approach, 713 

showing one candidate for megadrought events (DAI > 20%) as highlighted with the vertical 714 

solid line. The PDSI and DAI time series were smoothed with a 35-year running mean average 715 

filter, PDSI35 and DAI35.  716 
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 731 

 732 

Figure 7: Palmer Drought Severity Index (PSDI) and sea surface temperature (SST) for a 733 

megadrought case using a CAM5 simulation for the moving-block (mv-Ba) approach. The case 734 

is the one identified in the Figure 6, so the panels are the average fields over 35-years that 735 

defined the megadrought duration indicated by the vertical line in the DAI35 time series.  736 
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 749 
Figure 8: Palmer Drought Severity Index (PSDI) and Drought area index (DAI) time series 750 

defined over the SWUS region (124°-105°W and 32°-41°N) that shows one poor candidate for 751 

megadrought events (DAI < 20% but PDSI < -0.5) as highlighted with the vertical solid line. The 752 

PDSI and DAI time series were smoothed with a 35-year running mean average filter, PDSI35 753 

and DAI35. These time series correspond to the first millennium of the Last Millennium 754 

Ensemble (LME) experiment.  755 
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 768 

 769 
 770 

Figure 9: Palmer Drought Severity Index (PSDI) and sea surface temperature (SST) for a 771 

megadrought case using a simulation of the Last Millennium Ensemble (LME) experiment. The 772 

case is the one identified in the Figure 8, so the panels are the average fields over 35-years that 773 

defined the megadrought duration indicated by the vertical line in the DAI35 time series.  774 
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Figure 10: Probability density function (PDF) of the megadrought magnitude (a) and cumulative 821 

density function (CDF) of megadrought spatial scale (b).  The magnitude parameter is defined by 822 

the minimum of the Palmer Drought Severity Index (PDSI), running-mean average over 35 823 

years, PDSI35, over the Southwestern US, SWUS (124°-105°W and 32°-41°N). The spatial scale 824 

parameter is defined by the scaled Drought Area Index, scaled-DAI35. The three colored marks 825 

are the PDSI35 magnitude and DAI35 spatial scale computed with three different databases: 826 

NADA, mv-Ba, and CAM5-mv-Ba; all with a 1000-year record length. The big red dots are the 827 

PDSI35 magnitude and DAI35 spatial scale computed with 35 simulations from the Last 828 

Millennium Ensemble (LME experiment). Each red dot represents one simulation, so they are 829 

plotted using a histogram style. The cyan-colored histograms (PDF and CDF) are computed over 830 

a sample time series of 1000-year length with a total pooled of 1000 samples. The primary 831 

sample pool is from the 1000-year CAM5-mv-Ba control run. The secondary sample pools were 832 

generated by resampling it 1000 times with a 100-year time series of both the PDSI and SST 833 

from this CAM5-mv-Ba run, and then using the LIM to stochastically generate a 1000-year new 834 

randomized PDSI35 (Ault et al., 2018).  835 
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